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There is rich variety in the activity of single neurons recorded during behaviour. Yet, these diverse single
neuron responses can be well described by relatively few patterns of neural co-modulation. The study
of such low-dimensional structure of neural population activity has provided important insights into
how the brain generates behaviour. Virtually all of these studies have used linear dimensionality reduction
techniques to estimate these population-wide co-modulation patterns, constraining them to a flat “neural
manifold”. Here, we hypothesised that since neurons have nonlinear responses and make thousands of
distributed and recurrent connections that likely amplify such nonlinearities, neural manifolds should
be intrinsically nonlinear. Combining neural population recordings from monkey motor cortex, mouse
motor cortex, mouse striatum, and human motor cortex, we show that: 1) neural manifolds are intrinsically
nonlinear; 2) the degree of their nonlinearity varies across architecturally distinct brain regions; and
3) manifold nonlinearity becomes more evident during complex tasks that require more varied activity
patterns. Simulations using recurrent neural network models confirmed the proposed relationship between
circuit connectivity and manifold nonlinearity, including the differences across architecturally distinct
regions. Thus, neural manifolds underlying the generation of behaviour are inherently nonlinear, and
properly accounting for such nonlinearities will be critical as neuroscientists move towards studying
numerous brain regions involved in increasingly complex and naturalistic behaviours.

Introduction
Behaviour is ultimately generated by the orchestrated activity of neural populations across the brain. An increasing
number of studies show that the coordinated activity of populations of tens or even hundreds of neurons within a given
brain region can be captured by relatively few covariation patterns, which we call neural modes1, 2. This observation
holds strikingly well across a variety of species, brain regions, and tasks, from the locust olfactory system during odour
presentation3, to the human frontal cortex during memory and categorization4. The investigation of the neural modes
and their time-varying activation or latent dynamics has shed light into questions about the generation of behaviour
that had remained elusive when studying the independent function of single neurons. These insights range from
behavioural flexibility5, 6 and stability7, 8, to motor learning9–14, principles of covert behaviour15–17, and representations
of time18–20.
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Virtually all these studies adopted linear dimensionality reduction methods such as Principal Component Analysis
(PCA) or Factor Analysis to identify the neural modes and their associated latent dynamics from the firing rates of the
recorded neural population21, 22. As such, it was implicitly assumed that the neural modes capturing the population
activity define a lower dimensional surface or neural manifold that is effectively flat—although there are exceptions
outside the motor system, the focus of this work, e.g., Ref. 23–27. However, the activity of single neurons is inherently
nonlinear: at any given moment, a single neuron fires either zero or a positive and finite number of action potentials.
Moreover, each neuron can make up to thousands of connections with other neurons, creating intricate connectivity
patterns28, 29. Such intricate connectivity patterns, in turn, should make the interactions between these neurons
equally complex, and likely nonlinear—which likely contributes to the low pairwise correlations between neurons
observed experimentally30–33. This combination of nonlinear neurons with complex interactions suggests that the
neural manifolds underlying the neural population activity may be similarly nonlinear (Figure 1A). Thus, the flat
manifolds commonly assumed in neuroscience may be incomplete views into more complex, nonlinear surfaces, an
approximation that may even lead to misleading interpretations of the data23.
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Figure 1: Hypothesis. A. Due to the nonlinear activity profiles of single neurons and the complex connectivity profiles
of neural circuits, we hypothesized that neural manifolds underlying behaviour should be nonlinear. B. We predicted
that, if the geometry of neural manifolds indeed reflects circuit properties, neural manifolds from cytoarchitecturally
different brain regions would exhibit distinct degrees of nonlinearity. C. We further predicted that more complex
behavioural tasks that require a broader range of activity patterns will make the intrinsic nonlinearity of neural manifolds
more apparent.

Here, we address the hypothesis that the neural manifolds across the motor system are inherently nonlinear. If this
is true, we expect nonlinear methods to capture the neural population activity underlying behaviour better than flat
(linear) manifolds. We further predict that the degree of nonlinearity in the neural manifold is determined by the
anatomical and functional factors discussed above. First, if manifold nonlinearity relates to the neural connectivity
within the circuit, brain regions with very different circuit architectures should display different degrees of nonlinearity
during a given behaviour (Figure 1B). Second, if neural activity lies on a nonlinear manifold, the nonlinearity of the
estimated manifold should increase with the complexity of the task. Intuitively, one reason to think that flat manifolds
approximate neural population activity well is that curvature is relatively shallow over the region examined, making a
linear approximation to the inherently nonlinear manifold quite accurate (Figure 1C). In contrast, looking over a larger
extent of the manifold will be more revealing of differences between flat approximation and more accurate nonlinear
description. Accordingly, for any given brain region, “complex” tasks that require more varied behaviour and thus elicit
a broader range of neural activity patterns should have more apparently nonlinear manifolds than simple tasks that only
require a few different activity patterns (Figure 1C).

We addressed these three hypotheses using a combination of computational models and neural population recordings
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from monkeys, mice, and humans performing reaching, grasping and pulling, and imagined writing tasks, respectively.
We first show that even during a relatively simple centre-out reaching task, the activity of neural populations from
monkey motor cortex is better described by a nonlinear rather than a flat manifold. An analysis of recurrent neural
network (RNN) models13, 34–37 with different connectivity patterns trained to perform this task showed that the
nonlinearity of neural manifolds capturing the network activity is highly dependent upon their connectivity structure,
lending support to the idea that circuit properties shape manifold nonlinearity. To verify in vivo this second hypothesis
that manifold nonlinearity is determined by circuit properties, we compared manifolds underlying the activity of neural
populations from two cytoarchitecturally distinct motor regions of the mouse brain—motor cortex and the dorsolateral
striatum— during a grasping and pulling task8, 38, 39. Manifold nonlinearity was indeed markedly different between
these two regions, with striatal manifolds being much more nonlinear than motor cortical manifolds. Finally, we
tested whether manifold nonlinearity becomes more evident during more varied behaviours. Using neural population
recordings from human motor cortex40, we showed that manifolds underlying a broad range of attempted movements
were more nonlinear than those underlying a more limited repertoire. Combined, these results show that intrinsically
nonlinear manifolds underlie neural population activity during behaviour, and that the degree of nonlinearity is shaped
by both the circuit connectivity and behavioural “complexity”. Considering these nonlinearities will likely be crucial as
the field moves toward the study of a broader range of brain regions during ever more complex behaviours.

Results
Nonlinear manifolds underlie motor cortical population activity during reaching

We trained two macaque monkeys (C and M) to perform an instructed delay centre-out reaching task using a planar
manipulandum (Figure 2A) (Methods). Monkey C performed the task in two sets of experiments, first using the right
arm, and then the left arm, which we denote as Monkey CL and CR, respectively (L and R refer to the contralateral
side of the brain). We recorded neural activity using chronically-implanted microelectrode arrays inserted into the arm
area of the primary motor cortex (Monkey CR, CL, and M) and dorsal premotor cortex (Monkeys CL and M). These
recordings, which we combined across areas due to similarities in their activity41, allowed us to identify the activity of
hundreds of putative single motor cortical neurons during each session (46–290 depending on the session; average,
154±86) (Figure 2B). To better account for the variability in neural activity and behaviour across different trials, we
performed all analyses on single trial data rather than on trial averaged data.

We first identified flat manifolds spanning the neural population activity underlying movement using PCA5, 7, 11, 21, 42.
As expected5, 11, 43, 44, a large portion of the variance in the neural data was captured by relatively few neural modes
(principal components in the case of PCA; gray trace in Figure 2C, and Figure S1). To determine if nonlinear manifolds
capture the neural population activity better than flat manifolds, we used a standard nonlinear dimensionality reduction
method, Isomap45, to find a nonlinear manifold underlying the same neural population activity. As shown in Figure 2C,
a nonlinear manifold explained the same amount of variance as a flat manifold with considerably fewer neural modes
(compare the blue and gray traces; Figure S1 shows additional examples, and Figure S2 A, B validates this approach
on known manifolds). Since explaining more variance with fewer modes is a hallmark of a better model fit, this result
indicates that motor cortical manifolds are intrinsically nonlinear even during a relatively simple task.

We performed additional analyses to verify this observation. First, we assessed whether flat or nonlinear manifolds better
capture the structure of neural population activity by quantifying how well their respective latent dynamics can be
used to reconstruct the full dimensional activity using a “reconstruction error” metric (called “residual variance” in
the original Isomap paper45). For all 24 datasets, linear manifolds had considerably larger reconstruction errors than
their nonlinear counterparts until at least 10–20 neural modes were considered (Figure 2D; Figure S1). Moreover, the
Isomap reconstruction errors had a clear “elbow”—a dimensionality value at which the error abruptly saturated—at
∼3 dimensions, which indicates that considering additional nonlinear neural modes did not greatly improve the
low-dimensional representation of the neural population activity. Such an elbow was absent from all the flat manifolds.

The previous analyses indicate that nonlinear manifolds require fewer dimensions than flat manifolds to capture the
variance in neural population activity (Figure 2C), while also allowing for better reconstruction of the recorded neural
activity (Figure 2D). As a final analysis to establish the nonlinearity of neural manifolds, we investigated whether
the properties of the estimated nonlinear manifold were also more robust against changes in the neurons used for
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Figure 2: A nonlinear manifold underlies motor cortical population activity during a centre-out reaching
task. A. Monkeys performed a centre-out reaching task with eight targets. B. Average single neuron firing rates and
hand positions as a monkey reached to each target. Data from a representative session from Monkey CR. C. Cumulative
neural variance explained by flat (gray) and nonlinear (blue) manifolds as function of the number dimensions. Shown
are one example data set for each monkey. D. Reconstruction error after fitting flat (gray) and nonlinear (blue) manifolds
with increasing dimensionality. Data from the same three example sessions as in C. E. Estimated dimensionality of flat
(grey) and nonlinear (blue) manifolds as function of the number of neurons used to sample them. Lines and shaded
areas, mean±s.d. across 10 random subsets of neurons.1 Data from all sessions from Monkey CL. F. Nonlinearity index
indicating the ratio of the estimated dimensionality of nonlinear manifolds to that of flat manifolds as function of the
number of neurons used to sample them. Shown are all sessions from each monkey, colour coded by animal (legend).
Values greater than one (dashed grey line) indicate that nonlinear manifolds capture the data better than flat manifolds.
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its estimation than those of their linear counterparts. We focused on the estimated dimensionality of the neural
manifold and hypothesised that if manifolds are truly nonlinear, using a sufficiently large number of neurons for its
estimation should consistently give the same estimated dimensionality (see examples for known manifolds in Figure
S2C). In contrast, if the low-dimensional projection onto the neural manifold fails at fully capturing the structure of the
population activity, then the estimated dimensionality will likely increase as more neurons are considered. Remarkably,
for virtually all datasets, the estimated dimensionality of the nonlinear manifolds plateaued after 30–40 neurons were
considered (blue traces in Figure 2E; Figure S3A), whereas that of flat manifolds never reached a plateau even when
considering all recorded neurons (65–250). This trend became most apparent when we computed a “nonlinearity index”
as the ratio between the estimated dimensionality of the linear and nonlinear manifolds for the same number of neurons.
The nonlinearity index mostly took values greater than one and increased monotonically with the number of neurons,
indicating that nonlinear manifolds provided progressively better approximations of the neural population activity as
the number of neurons increased (Figure 2F). These results were obtained by estimating the manifold dimensionality
using the “participation ratio”, defined as the number of neural modes required to explain ∼80 % of the total variance2,
but the trend was the same when using a different, recently proposed dimensionality estimation metric46, 47 (Figure
S3B).

We performed additional controls to establish the nonlinearity of neural manifolds. First, we verified that the dimension-
ality estimates for the linear and nonlinear manifolds were independent of the dimensionality reduction technique used
for manifold estimation. Reassuringly, we obtained similar dimensionality estimates when we used Factor Analysis9, 48

rather than PCA to identify the flat neural manifolds (Figure S3C), and when we used nonlinear PCA49 rather than
Isomap to identify the nonlinear neural manifolds (Figure S3D). Nonlinear manifolds were also more informative about
behaviour: decoders trained on the latent dynamics within nonlinear manifolds outperformed those trained on linear
manifolds given the same number of neural modes (Figure S3E), suggesting that the nonlinearities capture behaviourally
relevant information. Taken together, these results show that the presence of nonlinear manifolds reflects fundamental
features of neural population activity, and not just the greater ability of nonlinear dimensionality reduction methods to
fit data. Motor cortical manifolds are nonlinear even for a rather simple eight-target centre-out reaching task, and linear
approximations of these intrinsically nonlinear structures become progressively more inaccurate as more neurons are
considered.

A neural network model to understand the emergence of manifold nonlinearity

Having verified that motor cortical population activity is best captured by nonlinear rather than flat neural manifolds,
we investigated whether this nonlinearity was related to circuit connectivity (Figure 1A,B). Since synaptic connectivity
cannot be directly investigated during our behavioural experiments, we addressed this hypothesis using RNN models
of motor cortical activity with different structure in their recurrent connectivity. We trained RNNs to perform the
same instructed delay reaching task studied above (Methods). Our model architecture was based on previous studies
using RNNs to simulate motor cortical activity13, 34–37, but adapted to account for trial-to-trial variability during
reaches to the same target. We achieved this by training RNNs to produce the monkey’s hand velocity during each
recorded trial using the actual trial-specific preparatory neural activity as input, rather than the typical target cue
(Methods; Figure 3A,B; Figure S4A,B). RNNs trained with this approach recapitulated key features of the actual
neural activity, both at the population level (Figure 3C; Figure S4D) and the single unit level, including clear—albeit
more moderate—fluctuations across different trials to the same target (Figure S4C). These observations established our
RNNs as suitable models for the actual neural activity.

We next investigated the relationship between the degree of recurrent connectivity of the network and manifold
nonlinearity. We hypothesized that manifold nonlinearity is in part due to the extensive number of connections across
brain neurons. Consequently, we predicted that for networks with the same architecture manifold nonlinearity would
increase with the degree of recurrent connectivity. Our results show that the population activity for networks with low
connectivity (10% and 40%) was spanned by a relatively flat manifold, as indicated by the similarity in variance explained
(Figure S4E), reconstruction error (Figure 3D) and estimated dimensionality (Figure S4F) between flat and nonlinear
manifolds. High connectivity networks (70% and 100%), in contrast, had manifolds that were clearly nonlinear based
on all three metrics (Figure 3D; Figure S4E,F). Most notably, the reconstruction error was larger for the flat compared to
the nonlinear manifolds for any given number of neural modes (Figure 3D). Moreover, the dimensionality of nonlinear
manifolds reached a plateau after relatively few units while that of the flat manifolds continued to increase as more
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Figure 3: A recurrent neural network model supports the relationship between circuit connectivity and
manifold nonlinearity. A. We trained recurrent neural network models to generate the actual hand velocities generated
by the monkeys using trial-specific preparatory activity as inputs. B. These models reproduced the variability across
reaches to the same target observed experimentally. C. The latent dynamics of the network activity recapitulated the
structure of the monkey latent dynamics (systematic quantifications in Figure S4). Individual traces, trial averaged
activity for each target. D. Reconstruction error after fitting flat (grey) and nonlinear (blue) manifolds with increasing
dimensionality. Data for example networks with increasing degrees of recurrent connectivity (10%, 40%, 70% and
100%). E. Nonlinearity index indicating the ratio of the estimated dimensionality of nonlinear manifolds to that of flat
manifolds as function of the number of sampled units. We compare results for networks with increasing degrees of
recurrent connectivity (legend). Values greater than one (dashed grey line) indicate that nonlinear manifolds capture
the data better than flat manifolds. Lines and shaded areas, mean±s.d. across 15 repetitions for each of the 10 seeds.
F. Strength of pairwise correlations between units from networks with different degrees of recurrent connectivity,
compared to the actual monkey data. Violin, probability density for each network connectivity and monkey level.
***P < 0.001, Wilcoxon rank-sum test.
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units were considered (Figure S4F), which resulted in nonlinearity indexes presenting values well above one (Figure
3E). Therefore, when considering these “standard” RNN models, only the activity of networks with dense recurrent
connections was spanned by nonlinear manifolds, with manifold nonlinearity increasing with the level of recurrent
connectivity. This trend held for a different class of recurrent network models (Figure S5), and even when we trained
RNNs with linear rather than nonlinear units to perform this same task (Figure S6A). In stark contrast, fully connected
feedforward networks that lacked recurrent connectivity had flat manifolds (Figure S6B). Combined, these results
suggest that dense recurrent connectivity may be both necessary and sufficient for neural manifolds to become nonlinear.
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Figure 4: A recurrent neural network model constrained to have low pairwise correlation between units
has more nonlinear manifolds. A. We modified the training procedure of our models so as to limit their pairwise
correlations between units to better match experimental neural data. B. These models also reproduced the experimentally
recorded hand trajectories. C. “Decorrelated networks” have pairwise correlations between units that are similar in
magnitude to those experimentally observed in monkeys. Shown are the strength of pairwise correlations between units
from “decorrelated networks” with two degrees of recurrent connectivity compared to “standard networks” with similar
degrees of connectivity, along with the pairwise correlations experimentally observed in monkeys. Violin, probability
density for each network connectivity level and monkey. ***P < 0.001, Wilcoxon rank-sum test. D. Reconstruction
error after fitting flat (grey) and nonlinear (blue) manifolds to “standard” (left) and “decorrelated” (models) with similar
levels of recurrent connectivity (10%). E. Nonlinearity index indicating the ratio of the estimated dimensionality of
nonlinear manifolds to that of flat manifolds as function of the number of sampled units. We compare results between
various standard and decorrelated networks (results for additional degrees of recurrent connectivity are shown in Figure
S7C). Lines and shaded areas, mean±s.d. across seeds.

So far, we have compared our models to actual data based on task performance and neural manifold properties. To
further relate the model results to the actual neural data, we studied pairwise correlations between units. Interestingly,
for our standard models, increasing network connectivity moderately decreased these pairwise correlations, bringing
them closer to the lower experimentally observed values (compare the distributions in Figure 3F), and suggesting
an inverse relationship between these two measures. However, even for the densely connected networks pairwise
correlations still exceeded quite dramatically those obtained from the neural data (compare “Monkey” and “Model”
distributions in Figure 3F). To address this, we trained a new set of RNNs with the additional constraint of producing
lower pairwise unit correlations (Methods; Figure 4A). While these “decorrelated” networks learned the task successfully
(Figure 4B; Figure S7A), the resulting unit correlations were much closer to the experimentally observed correlations
than those of our previous standard models (Figure 4C; Figure S7B). Furthermore, the decorrelated networks had
population activity patterns similar to those observed in monkey motor cortex (Figure S7D). We found that the

7

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2023. ; https://doi.org/10.1101/2023.07.18.549575doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549575
http://creativecommons.org/licenses/by-nc/4.0/


manifolds of the decorrelated networks were much more nonlinear than those of the standard networks, even for
matching degrees of recurrent connectivity (Figure 4D,E; Figure S7E)—while still exhibiting an association between
recurrent connectivity level and manifold nonlinearity (Figure S7C). In agreement with our hypothesis that circuit
connectivity shapes manifold nonlinearity, the differences in pairwise correlations and manifold nonlinearity between
standard and decorrelated networks corresponded to differences in their connectivity: overall, the weight changes
required by the standard networks to learn the task were higher dimensional than those of decorrelated networks (Figure
S7F). Combined, our simulations show that network connectivity is indeed an important factor shaping manifold
nonlinearity. While the activity of sparsely connected standard networks could be captured by a flat manifold, all other
more physiologically relevant conditions led to the emergence of nonlinear manifolds.

Neural manifold nonlinearity changes across cytoarchitecturally distinct brain regions

The observation that different network connectivity patterns lead to different degrees of manifold nonlinearity implies
that differing brain regions may be better or worse approximated by flat manifolds depending upon their circuit proper-
ties. To verify this presumed relationship in vivo, we compared the nonlinearity of motor cortical manifolds to another
area critical for forelimb movement but with very different microarchitecture and cell types: the dorsolateral striatum
(henceforth just striatum). Motor cortex has more recurrent excitatory connectivity, expected to increase pairwise
correlations, and has a broad range of cellular nonlinearities50, 51 (due to large dendritic tree and many interneuron
types). Striatum, on the other hand, does not present these different neuron types, and has a very different circuitry
dominated by feedforward and recurrent inhibitory connectivity52, 53, expected to decrease pairwise correlations32, 54.
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Figure 5: The nonlinearity of neural manifolds changes across architecturally distinct brain regions. A.
Mice performed a reaching, grasping, and pulling task with four conditions (two positions × two targets). B. Average
single neuron firing rates for motor cortex (top) and striatum (bottom), and hand positions as one mouse performed
each condition. C. Strength of pairwise correlations between striatal (left) and motor cortical (right) neurons. Violin,
probability density for each brain region. ***P < 0.001, Wilcoxon rank-sum test. D. Cumulative neural variance
explained by flat (grey) and nonlinear (blue) manifolds as function of the number dimensions for one representative
mouse. E. Reconstruction error after fitting flat (grey) and nonlinear (blue) manifolds with increasing dimensionality
to the motor cortical (left) and striatal (right) population activity. Data from the same example mouse as in C. F.
Nonlinearity index indicating the ratio of the estimated dimensionality of nonlinear manifolds to that of flat manifolds
as function of the number of neurons used to sample them. Shown are all mouse sessions, colour coded by region
(legend). Values greater than one (dashed grey line) indicate that nonlinear manifolds capture the data better than flat
manifolds.
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We analysed simultaneous motor cortical and striatal population recordings from four mice performing a reaching,
grasping and pulling task8, 38, 39(Methods; Figure 5A,B) (motor cortical neurons: 54–96 depending on the session;
average, 76±15, mean±s.d.; striatal neurons: (62–106 depending on the session; average, 83±14, mean±s.d.). As
expected54, pairwise striatal correlations were significantly lower than motor cortical correlations (P<0.001, Wilcoxon
Rank Sum test; see Figure 5C). Does this difference in pairwise correlations lead to a difference in neural manifold
nonlinearity as predicted by our neural network model results?

We observed striking differences in the dimensionality of flat manifolds estimated from motor cortex and striatum, even
though we recorded both regions simultaneously during the same behaviour. Many more neural modes were needed
to explain the same amount of neural variance for the striatum compared to motor cortex (Figure 5D; Figure S8A,B),
despite strong similarities in the single neuron firing rate statistics between these two regions (Figure S8C). Moreover,
comparing the nonlinearity of motor cortical and striatal manifolds provided direct evidence that manifold nonlinearity
can be strikingly different across different brain regions: all of our three measures revealed that striatal manifolds are
nonlinear whereas motor cortical manifolds estimated during this behaviour appear mostly flat (Figure 5D-F; Figure
S8A,B, S9).

The RNN simulations suggested that manifold nonlinearity is inversely related to pairwise correlation between neurons,
which is in turn influenced by the connectivity pattern of the network (Figure 4). Our analysis of simultaneous
striatal and motor cortical population activity shows that this relationship also holds for neural data: striatum showed
lower pairwise correlation between units and higher manifold nonlinearity. Considering that striatal neurons have
less nonlinear responses than motor cortical neurons51, 55, these experimental findings reinforce the modeling results
(Figure S6) suggesting that circuit properties may indeed be the primary factor underlying neural manifold nonlinearity,
rather than individual neuron nonlinearities.

More varied behaviours reveal greater manifold nonlinearities

We have shown that neural manifolds in monkey motor cortex are nonlinear (Figure 2), while mouse motor cortical
manifolds are ostensibly flat (Figure 5). What is the reason for this discrepancy? Our third hypothesis stated that tasks
that require a broader range of movements and thus more varied patterns of neural activity should reveal more clearly
the intrinsic nonlinearities of neural manifolds (Figure 1C). Thus, we posited that this discrepancy is driven by the
difference in complexity between these two tasks: while the monkey reaching task required a wide variety of muscle
activity patterns56, 57, mice only had to reach to one of two positions away from the body8.

To study the relationship between manifold nonlinearity and task complexity, we analysed the activity of neural
populations from the “hand knob” area of motor cortex while a paralysed participant attempted to write straight lines,
single letters, and symbols according to a visual cue using their contralateral hand (data from Ref. 40, including ∼200
multi-units per session) (Figure 6A,B). We first studied a task in which the participant attempted to draw one-stroke
lines of three different lengths and across 16 directions. We compared neural manifolds underlying population activity
while the participant drew lines in a single direction with those underlying the drawing of lines in all 48 length ×
direction combinations. First, we observed that the neural manifold during the task of drawing lines in a single direction
was rather flat, with both PCA and Isomap giving similar reconstruction error (Figure 6C; Figure S10A,B), and both of
their estimated dimensionalities plateauing before all the neurons in the population were considered (Figure S10C). In
contrast, when many line lengths and directions were considered, all our measures indicated that the motor cortical
was nonlinear (Figure 6C,D; Figure S10B,C). We also replicated this result in the monkey centre-out reaching task by
showing that neural manifolds underlying reaches to all eight targets were much more nonlinear than those underlying
reaches to one single target (Figure S10D-F)

We further compared the nonlinearity of neural manifolds underlying even more complex movements. We isolated trials
where the participant attempted to draw letters from the English alphabet with very similar shapes58, and compared
the estimated neural manifolds with those underlying the drawing of all letters. As expected, the nonlinear manifolds
underlying both tasks were considerably lower dimensional than their flat counterparts. Interestingly, manifold non-
linearity increased for the larger group of dissimilar letters (Figure 6E,F; Figure S10D-F), a difference likely driven
by the smaller exploration of neural space for the limited set of letters (inset in Figure 6F). The observation that task
complexity increases manifold nonlinearity across three different tasks in two different species supports the hypothesis
that more complex behaviours that require more varied behaviour make the intrinsic nonlinearity of neural manifolds
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Neural manifolds become more nonlinear as the participant attempted to draw more letters

Distance neural space

Figure 6: More complex tasks that require more varied neural population activity patterns reveal greater
manifold nonlinearity in human motor cortex. A. One participant implanted with microelectrode arrays in the
hand “knob” area of motor cortex performed a variety of attempted drawing (“Lines task”) and handwriting tasks. B.
Average firing rates for twelve different letters when attempting to draw lines in four different directions (top) and when
attempting to write four different letters (bottom). C. Reconstruction error after fitting flat (grey) and nonlinear (blue)
manifolds with increasing dimensionality to the neural population activity as the participant attempted to drew strokes
in one direction (left) or across all sixteen directions (right). D. Nonlinearity index indicating the ratio of the estimated
dimensionality of nonlinear manifolds to that of flat manifolds as a function of the number of neurons used to sample
them for the simple and complex version of the stroke drawing task. E. Same as D but comparing drawing similar letters
(left) to drawing all the letters in the English alphabet (right). G. Same as E but for the comparison between simple and
complex writing tasks. Inset: Neural states associated with attempting to draw letters with similar shapes are closer than
those for different letters, as confirmed by an Euclidean distance analysis.

more apparent.

Discussion
Technological, computational, and theoretical advances have fostered an expansion from the study of single-neuron
activity and the encompassing neural circuits to the investigation of the latent dynamics reflecting the coordinated
activity of neural populations1, 59–61. In practice, these latent dynamics are inferred by projecting the recorded neural
activity onto a neural manifold that is identified using a particular dimensionality reduction or manifold learning
method21, 22. As such, the particular choice of methodology translates into implicit assumptions about the properties
of the neural manifold. Most studies have relied on linear methods such as PCA or Factor Analysis to identify the latent
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dynamics, thereby assuming that the neural population activity lies in a flat neural manifold. We tested the hypothesis
that neural manifolds underlying behaviour are intrinsically nonlinear by comparing the relative performance of linear
and nonlinear dimensionality reduction methods on recordings from a variety of tasks, brain regions, and species. We
showed that, in virtually all cases, the activity of neural populations from motor regions of the brain is best described
by a nonlinear rather than a flat manifold. We further established that circuit architecture (e.g., brain region) and
task complexity (e.g., how many different movements are performed) are the key factors that determine the degree of
manifold nonlinearity.

Factors driving the region-specificity of manifold nonlinearity

We investigated possible biophysical factors leading to the intrinsic nonlinearity of neural manifolds. We predicted
that circuit connectivity would be a key determinant of manifold nonlinearity, and found that increasing recurrent
connectivity monotonically increased manifold nonlinearity for two different artificial neural network architectures
(Figure 3; Figure S4, S5). Moreover, flat manifolds accurately captured the latent dynamics for only a subset of sparsely
connected networks (Figure 3; Figure S5). This association between recurrent connectivity and manifold nonlinearity
held for RNN models with both nonlinear and linear units (Figure S6A) but was absent in purely feedforward fully-
connected networks with nonlinear units. Thus, manifold nonlinearity may result not from the properties of the
individual units, but rather from the interactions among the constituent units in an emergent fashion62, 63.

We further confirmed the link between circuit connectivity and manifold nonlinearity experimentally. Neural manifolds
from the architecturally distinct mouse motor cortex and dorsolateral striatum showed different degrees of nonlinearity
during the same behaviour even while providing comparable predictions of movement kinematics8. Based on our RNN
results, we argue that this difference arises at least in part from their distinct cytoarchitecture50–53. Yet, the difference in
manifold nonlinearity between motor cortex and striatum could also be driven by differences in the types of inputs they
receive. Indeed, compared to M1, striatum may integrate inputs from a wider variety of brain regions, encompassing
motor, associative, sensory, and limbic regions52, 54, 64. Integration of such varied information streams may lead to more
intricate population-wide activity patterns that are better approximated by a nonlinear manifold.

Both our RNN models and the comparison between mouse motor cortex and striatum showed that more nonlinear
manifolds are associated with lower pairwise correlations between neurons (Figure 3 and 5, respectively). Moreover,
when we limited the value of these correlations during training, RNNs with comparable degrees of recurrent connectivity
exhibited stronger manifold nonlinearities (Figure 4). Interestingly, a previous study linked lower pairwise correlations
to a higher dimensionality in flat manifolds65. Our results suggest that the increase in dimensionality of the embedding
flat manifold may be driven by an increase in nonlinearity, perhaps without a comparably large increase in the intrinsic
dimensionality66. That is, the number of variables needed to characterise the neural population activity may remain
constant even if the pairwise correlations between neurons and the dimensionality of the flat embedding manifold
increases.

Influence of task complexity on manifold nonlinearity

The nonlinearities inherent in neural manifolds became more apparent as the complexity of behaviours increased,
an observation that held for the motor cortex in both human (Figure 6) and monkey (Figure S10E,F). Essentially,
we propose that simple behaviours explore only a small portion of the available neural states. Even if the “landscape”
defined by these states were intrinsically nonlinear, these small explorations could be well approximated locally by a flat
manifold. However, as the complexity of behaviours increases, activity explores a larger region of state space and in the
process makes the nonlinearities more apparent (Figure 1C).

A previous theoretical study on the properties of flat motor cortical manifolds proposed that the upper bound on their
dimensionality should increase with task complexity2. Our results suggest an alternative explanation: increasing the
number of movements an animal performs may make the neural activity explore a larger portion of an intrinsically
nonlinear manifold. This should in turn increase the difference in the number of dimensions needed by linear and
nonlinear manifolds to accurately capture the neural population activity3, 67, 68.

Our data from monkey and mouse motor cortex revealed an intriguing difference between these two species: during the
studied behaviours, monkey motor cortical manifolds were nonlinear (Figure 2) while mouse motor cortical manifolds
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were flat (Figure 5). The differences in cytoarchitecture between these two species69 could be one factor driving this
difference, but we believe that behavioural complexity is the primary cause. The monkeys reached to eight different
targets by producing a relatively large variety of muscle activation patterns56, 57, including arm flexion and extension.
The mice, in contrast, reached in only one direction–away from the body8. Thus, the mice performed a far simpler
behaviour and thus their neural activity may have explored only a small portion of the motor cortical state space. This
interpretation is supported by our direct comparison between reaches to all eight different targets and reaches to a single
target during the monkey centre-out reaching task (Figure S10D-F). In the latter case, which is more akin to the mouse
dataset, manifolds were almost flat.

For practical and conceptual reasons, most neuroscientists study relatively low-dimensional behaviours produced by
animals with extensive practice in a given task. Our results indicate that as the field moves toward the study of more
complex naturalistic behaviours (e.g., Ref. 70, 71), we need to consider how this shift will influence our choice of
manifold estimation methods. Defining the dimensionality of behaviour also remains a looming challenge. Here, we
have assumed that tasks requiring more varied outputs—be it intended, as in the case of the human BCI participant
(Figure 6), or actual, as in the case of the monkeys (Figure S10E,F)—are more complex. While this assumption is
reasonable for the present study, a recent proposal to define the dimensionality of behaviour based on the number of
past features that maximally predict future movements72 could establish a more rigorous relationship between the
dimensionalities of the neural manifold and behavior.

Manifold nonlinearity beyond the motor system

While we have largely focused on regions in the motor system in the present work, we believe that nonlinear manifolds
may be an ubiquitous feature of neural population activity throughout the brain. Yet, the different roles of different
systems may translate into fundamental differences in the geometric and topological properties of these underlying
nonlinear manifolds. For example, primary sensory regions process rapidly changing stimuli, and are thus likely more
input-driven than motor regions controlling smooth limb movements. A recent study analysing the responses of large
neural populations in mouse primary visual cortex (V1) found that the dimensionality of flat manifolds increases with
the number of visual stimuli73, a trend that parallels our results in human (Figure 6) and monkey (Figure S10E,F) motor
cortex. Our results suggest that these V1 manifolds with increasing dimensionality may actually approximate a much
lower-dimensional neural manifold that is strikingly nonlinear. Relatedly, a recent study of the mouse whisker system
suggests that responses of somatosensory populations are best described by nonlinear manifolds74, providing evidence
of nonlinear manifolds in primary somatosensory regions. The amount of nonlinearity likely varies as you move further
from primary sensory organs, consistent with the recent observation of a gradient in linear manifold dimensionality
along the visual system75.

“Higher” brain regions that are less directly linked to the production of behaviour or sensory processing seem to also
have neural manifolds with complex and interesting nonlinear geometries. For example, the activity of populations of
head-orientation cells in the thalamus lie in a ring-shaped manifold the coordinates of which map onto the animal’s
heading direction23. Similarly, the activity of enthorinal “grid cells” lies in a toroidal manifold that forms a tessellated,
robust, and accurate representation of the environment27. Both these manifolds are preserved between awake behaviour
and different phases of the sleep cycle23, 27, 76, suggesting that their features may be dominated by biophysical constraints
(e.g., circuit properties) on neural population activity that are invariant to behavioural states. This conservation of
manifold geometry across behavioural states seems at odds with the changes reported for the motor system, where
producing different behaviours leads to dramatic changes in the orientation of flat manifolds6—although these changes
are absent when animals produce various related behaviours5.

Finally, the activity of neural populations in the hippocampus, a brain region involved in representing abstract maps of
concepts77 including space78, also lies on a nonlinear manifold whose geometry seems to be flexibly shaped by experi-
ence26, 79. Indeed, hippocampal manifold geometry changes as animals familiarise themselves with a new environment79,
or when they link their spatial maps to other cognitive variables, such as value26. Therefore, growing evidence suggests
that nonlinear neural manifolds are a universal feature across many cytoarchitecturally distinct regions in the brain.
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Conclusion
Investigating the coordinated activity of neural populations has furthered our understanding of how the brain generates
behaviour. However, leveraging this approach to understand more naturalistic behaviours will likely depend upon
adequately estimating the neural manifolds underlying the population activity. Here, we have shown that, during a
variety of motor tasks, neural manifolds are intrinsically nonlinear, their degree of nonlinearity varies across cytoarchi-
tecturally different brain regions, and becomes more evident during more complex behaviours. These results extend
recent reports of nonlinear manifolds across a variety of non-motor regions of the brain18, 23, 26, 27, to which we expect
our findings to also translate.

From a translational point of view, accounting for the nonlinear geometry of neural manifolds across the sensorimotor
system may be key to develop brain-computer interfaces that restore function across a broad range of behaviours based
on “decoding” control signals from brain activity80, 81. From a fundamental science point of view, accounting for the
region-specific nonlinearity of neural manifolds, which is present in cortical and subcortical regions during both overt
and covert behaviour, may be crucial to understand the neural basis for more complex and naturalistic behaviours.
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Methods
Subjects and tasks

Monkey

Two monkeys (both male, Macaca mulatta; Monkey C, 6–8 years during these experiments, and Monkey M, 6–7 years))
were trained to perform a standard centre-out reaching task using a planar manipulandum. They both had performed a
similar task for several months prior to the neural recordings, so they were proficient at it. In this task, the monkey
moved their hand to the centre of the workspace to begin each trial. After a variable instructed delay period (0.5–1.5
s), the monkey was presented with one of eight outer targets, equally spaced in a circle and selected randomly with
a uniform probability. Then, an auditory go cure signalled the animals to reach the target. The trial was considered
successful if the monkey reached the target within 1 s after the go cue, and held the position for 0.5 s. As the monkey
performed this task, we recorded the position of the endpoint of the manipulandum at a sampling frequency of 1
kHz using encoders in each joint, and digitally logged the timing of task events, such as the go cue. Portions of these
data have been previously published and analysed in Ref. 7, 11, 82 among others, and are publicly available on Dryad
(https://doi.org/10.5061/dryad.xd2547dkt).

Mouse

After habituation to head-fixation and the recording setup, four 8–16 week old mice were trained to reach, grasp, and
pull a manipulandum (similar to the tasks in Ref. 38, 39) for approximately one month. In this task, mice had to reach
and pull a joystick positioned approximately 1.5cm away from the initial hand position. The joystick was placed in one
of two positions (left or right, ¡ 1 cm apart), and was weighed with two different loads (3 g or 6 g), adding to a total of
four trial types. During the experiments, mice could self-initiate a reach to the joystick, followed by the inward pull to
get a liquid reward, which was delivered ∼1 s after pull onset in successful trials only. A minimum inter-trial period of 7
s was required. Each trial type was repeated 20 times before the task parameters were switched to the next trial type
without any cue. For each session, there were two repetitions of each set of four trial types, presented in the same order,
making up 2 × 4 × 20 = 160 trials.

Two high-speed, high resolution monochrome cameras (Point Grey Flea3; 1,3 MP Mono USB3 Vision VITA 1300;
Point Grey Research Inc., Richmond, BC, Canada) with 6-mm to 15-mm (f/1.4) lenses (C-Mount; Tokina, Japan) were
placed perpendicularly in front and to the right of the animal. A custom-made near-infrared light-emitting diode light
source was mounted on each camera. Cameras were synced to each other and captured at 500 frames/s at a resolution
of 352 by 260 pixels. Video was recorded using custom-made software developed by the Janelia Research Campus
Scientific Computing Department and IO Rodeo (Pasadena, CA). This software controlled and synchronized all facets
of the experiment, including auditory cue, turntable rotation, and high-speed cameras. Fiji video editing software was
used to time stamp in the videos. Annotation of behavior was accomplished using Janelia Automatic Animal Behavior
Annotator83 (JAABA).

Human

We analysed publicly available data by Willett et al.40 (https://doi.org/10.5061/dryad.wh70rxwmv). This
data was recorded while a BrainGate study participant (T5) attempted to write a variety of digits, letters, and symbols.
Participant T5, a 65 year old man at the time of data collection, with a 4 AIS C (ASIA Impairment Scale C – Motor
Incomplete) spinal cord injury that occurred approximately 9 years prior to study enrollment. As a result from this
injury, his only hand movements were limited to twitching and micromotions. Among the three tasks in this dataset,
we analysed the two that allowed us to most consistently explore a broad range of attempted movements, which we
hypothesised would reveal an increase in manifold nonlinearity. These were: 1) attempting to draw straight lines of
three different lengths across 16 different directions using a single pen stroke; and 2) attempting to write one out of all
the letters and symbols of the English alphabet.

In both types of tasks, Participant T5 was presented with visual cues displayed on a computer monitor. Each trial began
with an instructed delay period of variable length (2.0–3.0 s), during which a single character appeared on the screen
above a red square that served as hold cue. During the delay period, T5 waited and prepared to attempt drawing the
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appropriate stroke or writing the corresponding character. Then, the red square in the center of the screen turned green,
instructing T5 to begin trying to attempt drawing the stroke or writing the character. After the 1 second go period, the
next trial’s instructed delay period began.

Neural recordings

Monkey

All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee of
Northwestern University under protocol #IS00000367. For recording, we used 96-channel Utah microelectrode arrays
implanted in the primary motor cortex (M1) and dorsal premotor cortex (PMd) using standard surgical procedures.
When recordings of both areas were available, these were pooled together and were denoted as motor cortex. Implants
were located in the opposite hemisphere of the hand the animal was using in the task. Monkey C received two sets of
implants: a single array in the right M1 while performing the task with the left hand; and, later, two arrays in the left
hemisphere (M1 and PMd) while using the right hand for the task. These sessions are denoted CR and CL respectively.
Monkey M received dual implants in the right M1 and PMd.

Neural activity was recorded during the behaviour using a Cerebus system (Blackrock Microsystems). The recordings
on each channel were band-pass filtered (250 Hz – 5kHz), digitised (30 kHz) and then converted to spike times based
on threshold crossings. The threshold was set to −5.5× the root-mean square activity on each channel. We manually
spike sorted all the recordings to identify putative neurons (Offline Sorter v3, Plexon, Inc, Dallas, TX). Overall, we
identified an average of 278 ± 33 neurons during each session from monkey CL (range, 207–309), 72 ± 17 neurons
during each session from monkey CR (range, 46–93), and 125 ± 23 neurons during each session from monkey M
(range, 92–159).

Mouse

All surgical and experimental procedures were approved by the Institutional Animal Care and Use Committee of
Janelia Research Campus. A brief (<2h) surgery was first performed to implant a 3D-printed headplate84. Following
recovery, the water consumption of the mice was restricted to 1.2 ml per day, in order to train them in a behavioural task.
Following training, a small craniotomy for acute recording was made at 0.5 mm anterior and 1.7 mm lateral relative to
bregma in the left hemisphere. A Neuropixels probe was centred above the craniotomy and lowered with a 10 degree
angle from the axis perpendicular to the skull surface at a speed of 0.2 mm/min. The tip of the probe was located at
3mm ventral from the pial surface. After a slow and smooth descent, the probe was allowed to sit still at the target depth
for a least 5 min before initiation of recording to allow the electrodes to settle.

Neural activity was filtered (high-pass at 300 Hz), amplified (200× gain), multiplexed, and digitised (30 kHz), and
recorded using the Spike GLX software (https://github.com/billkarsh/SpikeGLX). Recorded data were
pre-processed using the open-source software Kilosort 2.0 (https://github.com/MouseLand/Kilosort), and
manually curated using Phy (https://github.com/cortex-lab/phy) to identify putative single units in each of
the primary motor cortex and dorsolateral striatum. A total of six experimental sessions (from four different mice) with
simultaneous motor cortical and striatal recordings were included in this work. We identified an average of 76 ± 15 M1
neurons (range, 54–96), and 83 ± 15 striatal neurons (range, 62–106) in each session.

Human

Participant T5 was implanted with two 96-channel Utah microelectrode arrays implanted in the hand “knob” area
of the precentral gyrus. The publicly available neural data includes “multi-unit activity”, consisting of binned spike
counts (10 ms bins) indicating the number of times the voltage time series on a given electrode crossed a threshold set to
−3.5× the root-mean square activity on that channel for 192 channels per session.

Data analysis
We used a similar approach to analyse the monkey, mouse, and human data. First we discarded all the unsuccessful (in
the case of the animals, unrewarded) trials. An equal number of trials to each target was randomly selected (eight targets
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for the monkey and four conditions for mice). We focused our analyses on the following analysis windows: for the
monkey data, -100 – 400 ms with respect to the go cue; for the mouse data, -100 – 400 ms with respect to movement
onset; and for the human data, -100 – 600 ms with respect to the go cue.

Before performing any dimensionality reduction analysis to identify the underlying linear or nonlinear neural manifold,
we first computed the smoothed firing rates as a function of time for each single neuron (or multi-units, in the case of
the human data). We obtained these smoothed firing rates by applying a Gaussian kernel (σ = 50 ms) to the binned
square-root transformed firings (bin size = 20 ms) of each single unit or multi-unit (henceforth, simply “units”). We
only excluded units with a low mean firing rate (< 1 Hz mean firing rate across all time bins).

Estimating flat and nonlinear manifolds using linear and nonlinear dimensionality reduction
techniques

Following the pre-processing described in the previous section, we concatenated all the trials, producing a neural data
matrix X of dimension n by T, where n is the number of units and T is the total number of time points from all trials.
Note that for each session all trials were truncated to the same duration, and thus T equals the number of trials × the
duration of each trial. For each session, the simultaneous activity of all n recorded units was represented in a neural state
space. In this space, the joint recorded neural activity at each time bin is represented as a single point, the coordinates of
which are determined by the firing rate of the corresponding units. As the activity evolves over time, this point describes
a trajectory in neural state space, the latent dynamics. We estimated the linear and nonlinear manifolds underlying this
neural population activity to understand whether nonlinear manifolds outperform their flat counterparts at capturing
its properties. We used Principal Component Analysis (PCA) to compute flat manifolds and Isomap45 to compute
nonlinear manifolds, although we later replicated the main analysis using different linear and nonlinear dimensionality
reduction methods (see section “Additional analyses including controls” below).

PCA is a linear technique for dimensionality reduction that identifies an set of orthogonal directions (eigenvectors) that
capture the greatest variance in the data. These directions are ranked based on the amount of variance they explain, which
is quantified by the associated eigenvalue. In contrast, Isomap is a nonlinear dimensionality reduction technique that
finds a nonlinear manifold that embeds the data. The Isomap algorithm starts by constructing a neighborhood graph
based on the pairwise distances between data points. It connects each data point to its nearest neighbors, forming a graph
where the distances between connected points are approximately preserved. Next, Isomap estimates the pairwise geodesic
distances between all data points on the graph. Once the geodesic distances are computed, Isomap employs classical
multidimensional scaling to embed the data points into a lower-dimensional manifold. We refer to the dimensions
identified by any dimensionality reduction method simply as neural modes.

We used three different measures to establish how well flat and nonlinear manifolds captured the neural population
activity. First, we calculated the total neural variance explained by manifolds with increasing dimensionality by com-
puting the cumulative sum of the eigenvalues of the covariance matrix (for PCA) and the double-centered geodesic
distance matrix (for Isomap) (see, e.g., Figure 2C). In both cases, the eigenvalue corresponding to a given dimension
was divided by the total sum of the eigenvalues, bounding the values between zero and one.

As a second measure, we computed the reconstruction error, RE, provided by each method45:

RE = 1 − R2(DM, DY) (1)

where DY is the matrix of Euclidean distances in the low-dimensional embedding found by each method, and DM is
each method’s best distance estimate; in the case of Isomap, this corresponds to the geodesic matrix of distances, and
for PCA, to the Euclidean distance matrix of distances. Residual errors are bound between zero and one, with zero
indicating perfect reconstruction (see, e.g., Figure 2D). Note that this metric is called residual variance in the original
Isomap paper45; we have adopted a different nomenclature to avoid confusion with our first variance explained metric.

As a third measure, we assessed the estimated dimensionality of linear and nonlinear manifolds underlying the neural
population activity as function of the number of units. We posited that if a linear or nonlinear manifold captured well
the geometric structure of the latent dynamics, including more units should not change the estimated dimensionality.
In contrast, if the approximations provided by these methods are inaccurate, the estimated dimensionality would
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grow monotonically. We used the Participation Ratio2, PR, to estimate the dimensionality of the flat and nonlinear
manifolds:

PR =
(∑i λi)

2

(∑i λ2
i )

(2)

Where λi are the eigenvalues obtained with either PCA or Isomap. Since the eigenvalues are a measure of the amount
of variance explained by each mode, the Participation Ratio gives us an estimate of the variance distribution across the
different modes. In the extreme case that all the eigenvalues are the same, PR equals n, meaning the variance is evenly
distributed across all dimensions. In contrast, if PR equals one, the majority of the variance is captured by the first
dimension. This way, the Participation Ratio gives an estimation of the effective dimensionality, defined as the number
of dimensions necessary to explain ∼ 80% of the total neural variance2. To test the stability (or lack of) the estimated
manifold dimensionality as number of neurons, we took 10 random subsets of neurons between 5 and the total number
of recorded neurons, in steps of 10. Results are reported as mean±s.d.; Figure 2E shows a representative example. Note
that in contrast to Ref. 2 we used single-trial activity because our goal was to consistently compare the dimensionality of
manifolds for different numbers of neurons, rather than estimating the actual dimensionality of the neural population
activity. Moreover, we observed that the value of the Participation Ratio did not change after enough (∼ 15 trials per
target, for the centre-out reaching task) trials were considered.

Finally, to obtain a direct comparison between the estimated dimensionality of linear and nonlinear manifolds as a
function of the number of units considered for their estimation, we computed a “nonlinearity index” as the ratio
between the estimated dimensionality of the linear to that of the nonlinear manifold for the same number of units (see,
e.g., Figure 2F).

Establishing the influence of task complexity on manifold nonlinearity

We investigated whether more complex behaviours requiring a broader range of actions would reveal greater manifold
nonlinearity by directly comparing manifolds underlying a “simple” and a “complex” version of the same task. We
defined the simple task as a subset comprising one (for the monkey data) or several conditions (for the human data)
of the full set of conditions, which constituted the complex task. We matched the total number of trials between
simple and complex task by randomly subsampling from the complex task while keeping the same number of trials per
condition, to avoid biasing our results based on the number of data points.

Monkey

We defined the simple and complex tasks in the monkey data as reaching to one target and reaching eight targets,
respectively. We performed the comparison between simple and complex tasks while considering each of the eight
directions as a different simple task. For each reach direction, we repeated the analysis 10 times, taking different samples
of trials from the complex direction. The results, shown in Figure S10E, represent the average estimated dimensionality
of flat and nonlinear manifolds across all 10 repetitions of the eight simple tasks.

Human

For the human data, we investigated the influence of task complexity in manifold nonlinearity during one session in
which the participant attempted to draw straight-line strokes, and two sessions in which the participant attempted to
write single letters. For the session in which the participant attempted to draw straight-line strokes, we defined the
simple and complex task as we did for the monkeys: the simple comprised lines in only one direction but considering all
three lengths (for a total of 30 trials), and the complex task comprised the same number of trials including lines from all
16 directions. We repeated this analysis 10 times per reach direction (taking different subsets of trials for the complex
task), and averaged the results across them.

For the sessions in which the participant attempted to draw individual letters, we define the simple and complex tasks in
a slightly different way. Intuitively, and in agreement with Figure 1e in Ref. 40, similar shape letters and symbols should
require more similar M1 activity patterns than letters with different shape. We thus defined the simple task by selecting
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five letters with similar morphology58. We verified that similar letters defined based on their morphology indeed required
more similar activity patterns than any pair of randomly selected letters by computing the Euclidean distance between
neural states (details) in the full-dimensional state space (inset in Figure 6G). For this analysis, we defined the simple task
by taking 50 trials in which the participant attempted to write similar letters or symbols. As before, for the complex task,
we selected a matched number of trials from all the different letter and symbols. We repeated this process for five groups
of similar letters taking, for each of them, 50 subsets of trials to define the complex task. We report the average result.

Additional analyses including controls

Pairwise correlation analysis

We simply defined the pairwise correlation between pairs of units as their Pearson’s correlation coefficient.

Results do not depend on the specific dimensionality reduction technique used to identify the flat and
nonlinear manifolds

We used PCA and Isomap as linear and nonlinear methods to estimate a flat and a nonlinear manifold underlying the
neural population activity, respectively. To verify that our results were not a consequence of our choice of dimensionality
reduction techniques, we repeated our main analyses using two alternative methods: Factor Analysis and Nonlinear
PCA. Factor analysis (FA), like PCA, is often used to find a flat manifold underlying neural population recordings21. FA
identifies a low-dimensional space that preserves the variance that is shared across units while discarding variance that is
independent of each unit. We then estimated the dimensionality of these flat manifolds by computing the Participation
Ratio using the eigenvalues of the shared covariance matrix. Importantly, the estimated dimensionality of flat manifolds
identified using PCA and FA was highly correlated ??C, indicating that our results do not arise from the inherent
assumptions of PCA.

Similarly, we verified that the better ability of Isomap to capture the neural population activity when compared to PCA
generalised to other nonlinear dimensionality reduction techniques by repeating the main analyses using Nonlinear
PCA. Nonlinear PCA is an autoencoder-based approach that finds a latent representation of the input firing rates
and orders those latent signals (“nonlinear PCs”) based on their variance explained, enforcing a PCA-like structure on
the nonlinear low-dimensional embedding49. We used the MATLAB package from Scholz et al.49. Since nonlinear
PCA does not yield eigenvalues associated to the latent signals, explained variance was defined based on the quality
of data reconstruction. We used an 80% threshold to define the dimensionality of these flat manifolds, since this is
the approximate threshold provided by the Participation Ratio. Our direct comparison between nonlinear PCA and
Isomap shows a high correlation between the estimated dimensionality of their respective nonlinear manifolds (Figure
??E). Thus, our results do not arise from the implicit assumptions of Isomap alone, but generalise to other nonlinear
dimensionality reduction techniques.

Finally, we also verified that our results were not contingent on our choice of the Participation Ratio as a metric for
manifold dimensionality estimation. Thus, we verified that our results held when considering a recently proposed
principled alternative, Parallel Analysis46. Parallel analysis generates null distributions for the eigenvalues by repeatedly
shuffling each of the n firing rate vectors separately. The shuffling step ensures that the remaining covariation structure
across firing rates is not due to chance. Similar to Ref. 46, we repeated the shuffling procedure 200 times, resulting in a
null distribution for each eigenvalue based on 200 samples. The eigenvalues that exceeded the 95th percentile of their
null distribution were identified as significant; the number of significant eigenvalues determined the dimensionality of
the flat manifold. Figure S3D shows that the results obtained using Parallel Analysis on the eigenvalues obtained with
PCA are similar to those obtained using the Participation Ratio, establishing that the estimated dimensionality of flat
manifolds does not depend on our adopting a particular metric.

Establishing the behavioural relevance of nonlinear manifolds

To test whether the nonlinear neural modes identified with Isomap were behaviourally relevant, we built standard
Wiener filter decoders to predict continuous hand movements based on the latent dynamics within flat (identified
with PCA) and nonlinear (identified with Isomap) manifolds with increasing dimensionality. For decoding, we used
Ridge Regression (the Ridge class in Ref. 85). Since the hand trajectory is a two-dimensional signal, we built separate
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decoders to predict the hand trajectories along the X and Y axes; we reported the average performance across these
two axes. The R2 value, defined as the squared correlation coefficient between actual and predicted hand trajectories,
was used to quantify decoder performance. Figure ?? shows that linear decoders trained on latent dynamics within
nonlinear manifolds provide more accurate behavioural predictions than their counterparts trained on latent dynamics
within flat manifolds.

Neural network models
Recurrent neural network models

Model Architecture

To better understand the factors underlying manifold nonlinearity, we trained recurrent neural networks (RNNs) to
perform the same centre-out reaching task as the monkeys. These models were implemented using Pytorch86. Similar to
previous studies simulating motor cortical dynamics during reaching13, 34, 37, 87, we implemented the dynamical system
ẋ = F(x, s) to describe the RNN dynamics:

τẋi(t) = −xi +
N

∑
j=1

Ji,jrj(t) +
I

∑
k=1

Biksk(t) + bi (3)

where xi is the hidden state of the i-th unit and ri is the corresponding firing rate following tanh activation of xi.
All networks had N = 1000 units and I = 3 inputs, a time constant τ = 0.05 s, and an integration time step
dt = 0.03 s. Each unit had an offset bias, bi, initially set to zero. The initial states xt=0 were sampled from the uniform
random distribution U (−0.2, 0.2). To understand the influence of recurrent connectivity in manifold nonlinearity,
we trained networks with an increasing percentage of recurrent connections (10 %, 40%, 70%, and 100 %). The recurrent
weights Jij were initially sampled from the Gaussian distribution N (0, g√

N
), where g = 1.2. The time-dependent

inputs s (specified below) fed into the network had input weights B initially sampled from the uniform distribution
U (−0.1, 0.1).

In order to replicate experimental trial-to-trial variability across reaches to the same target, we designed the networks so
they took actual preparatory activity and produced single reaches recorded during a representative session. The inputs s
were four-dimensional, consisting of a one-dimensional fixation signal and a three-dimensional target signal. The target
signal remained at 0 until the target was presented (set to t = 210 ms). The fixation signal started at 1 and went to 0 at
movement onset (set to t = 420 ms). The three-dimensional target signal was derived from trial-specific preparatory
activity from monkey neural data by integrating over time the latent dynamics along the first D = 3 neural modes
obtained from performing PCA during the instructed delay period88 (-210 to +30 ms with respect to the go cue).

The networks were trained to produce two-dimensional outputs v corresponding to x and y velocities of the experi-
mentally recorded reach trajectories, which were read out via the linear mapping:

vi(t) =
N

∑
k=1

Wi,krk(t) (4)

where the output weights W were sampled from the uniform distribution U (−0.1, 0.1).

Training

Networks were trained to generate velocities of experimental reach trajectories from 600 trials from Monkey CL using
the Adam optimiser with a learning rate l = 0.001, first moment estimates decay rate β1 = 0.9, second moment
estimates decay rate β2 = 0.999, and ϵ = 1e − 8. Networks were trained for 2500 trials with a batch size B = 64. The
loss function L was defined as the mean squared error between the two-dimensional output and the target velocities
over each time step t, with the total number of time steps T = 25 (equal to 750 ms with dt = 0.03 s):
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L =
1

2BT

B

∑
b=1

T

∑
t=1

∑
d=1,2

(vtarget
d (b, t)− voutput

d (b, t))2. (5)

To produce dynamics that align more closely to experimentally estimated dynamics, we added L2 regularization terms
for the activity rates and network weights in the overall loss function LR used for optimization34 :

LR = L + RW + RR (6)

where

RR =
β

BTN

B

∑
b=1

T

∑
t=0

N

∑
n=1

rn(b, t)2 (7)

and
RW = α(||J||+ ||B||+ ||W||) (8)

where β = 0.5 and α = 0.001. We clipped the gradient norm at 0.2 before applying the optimization step.

To model the experimental observation of lower pairwise correlations between neurons, we trained a set of “decorrelated
networks” with an additional loss term that penalized the magnitude of pairwise correlations:

Lconstrained = LR +
α

N2

N

∑
i=1

N

∑
j=1

(rij)
2 (9)

where rij is the Pearson correlation coefficient between the i-th and j-th units, and α = 0.5. Both “standard” and
“decorrelate” network training were performed on ten different networks initialised from different random seeds.

LSTM model

To establish that our core model results did not depend critically on the type of neural network architecture we adopted,
we repeated our main analyses using a long short-term (LSTM) architecture. We chose this architecture given its ability
to predict movement during various tasks89. We used the same approach to replicate single trial variability as for the
RNNs: we used the actual preparatory activity as inputs and trained the LSTMs on the actual hand velocities that
monkeys produced during that trial.

We again trained the networks using the Adam optimiser with a learning rate l = 0.001, and used hyperbolic tangent
(tanh) as the network’s nonlinearity. Networks were trained until the error, they explained at least 70% of the variance
of the target velocity signals, according to the error function:

ELSTM =
1

2TM
× ∑(v̂ − v)2 (10)

Where v̂ and v are the predicted and measured two-dimensional velocities, respectively, T is the number of time bins
(T = 25), and M is the mini-batch size (M = 8 trials).

To compare the network activity and the neural data, we rectified, square-root-transformed, and smoothed the unit
activity using the same parameters as for the neural recordings.

Model validation

We used Canonical Correlation Analysis (CCA), a method that finds linear transformations that maximize the correla-
tion between pairs of signals90, to quantify the similarity between the neural network activity and the neural recorded
data34, 87. First, we separately applied PCA to the processed neural firing rates and model activations, and then performed
CCA on their 15-dimensional latent dynamics; this provided a vector with 15 monotonically decreasing correlation
values. To establish the relevance of these canonical correlations, we compared their values to various lower bounds
obtained by shuffling the data in different ways (over time, across targets, or both over time and across targets). In all
cases the actual canonical correlations greatly exceeded the shuffled lower bounds (e.g., Figure S4D, S7D).
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dataset/doi:10.5061/dryad.wh70rxwmv respectfully). The remaining data that support the findings in this
study are available from the corresponding author upon reasonable request.
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Figure S1: Additional data demonstrating the nonlinearity of neural manifolds underlying motor cortical
population activity during a centre-out reaching task. Each pair of plots shows the cumulative neural variance
explained (top) and residual variance (bottom) for each dataset from each monkey (header), complementing the
examples in Figure 2C,D. Note that in all cases Isomap captures the motor cortical population activity better than PCA.
n, number of recorded neurons.
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Figure S2: Validation of our manifold characterisation metrics on surfaces with known geometry. A. We
simulated a two-dimensional Swiss roll, a sphere and a plane embedded in an three-dimensional space. B. Cumulative
variance explained for each surface. Note that, while for Isomap there is an elbow at two-dimensions for the Swiss
roll and the sphere–indicating a potentially meaningful aspect of the data–, these are lacking in PCA. C. Estimated
dimensionality for the linear and nonlinear manifolds when considering all three spatial dimensions (i.e., akin to
considering three neurons). As expected, Isomap provided accurate estimations, whereas PCA overestimated the
dimensionality for all non-flat surfaces.
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Figure S3: Additional data demonstrating the nonlinearity of neural manifolds underlying motor cortical
population activity during a centre-out reaching task. A. Estimated dimensionality of flat (dark blue) and nonlinear
(light blue) manifolds as function of the number of neurons used to sample them. Data from all sessions from Monkeys
CR (left), CL (middle), and M (right); the results from Monkey CL are reproduced from Fig. 2E. Mean and error bars,
mean ± s.d. B. Comparison between the dimensionality estimated using the participation ratio and parallel analysis as
function of the number of recorded neurons (legend). The results do not depend critically on the metric. Individual
markers, represent one subsample of the population for all the sessions from Monkey CL. C. Comparison between the
estimated dimensionality of flat manifolds computed using PCA and Factor Analysis (FA) as function of the number
of recorded neurons (legend). Note the strong correlation. Data presented as in Panel 2B. D. Comparison between
the estimated dimensionality of nonlinear manifolds computed using Isomap and Nonlinear PCA. Data presented as
in Panel B for example session from Monkey CL. E. Accuracy of linear decoders trained to predict hand velocity as
function of the number of latent signals within flat (dark blue) and nonlinear manifolds (light blue) taken as inputs.
Data for all three monkey datasets. Individual markers, individual sessions; line, mean across sessions.
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Figure S4: Additional data establishing the similarity of our recurrent neural network model of single reaches
and actual motor cortical activity from monkeys performing the same task. A. Produced and target velocities
along the X (top) and Y (bottom) axes for several concatenated trials. B. Task performance is similar across models
with different degrees of recurrent connectivity. Individual markers, individual seeds; marker and error bars, mean±s.d.
across seeds. C. As in monkey motor cortex (top), model units (bottom) exhibit variability across trials to the same
target, albeit of smaller magnitude. D. Similarity between the actual and simulated latent dynamics (red) for models
with different degrees of recurrent connectivity, quantified using canonical correlation analysis. Note that the strength
of the correlations between model and actual data is similar across different connectivity levels, whereas shuffling the
model data over time (orange), across targets (light green), or across both time and targets (teal) greatly reduces this
similarity. Line and shaded area, mean±s.d. across seeds. E. Cumulative network variance explained by flat (grey)
and nonlinear (blue) manifolds as function of the number dimensions for models with increasing levels of recurrent
connectivity (10%, 40%, 70% and 100%). F. Estimated dimensionality of flat (grey) and nonlinear (blue) manifolds as
function of the number of units used to sample them for models with increasing levels of recurrent connectivity (10%,
40%, 70% and 100%). Lines and shaded areas, mean±s.d. across 10 random subsets of units.
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Figure S5: A different neural network architecture further establishes that dense recurrent connectivity is
necessary for the emergence of nonlinear manifolds. A. We trained LSTM models to produce the hand velocities
generated by the monkeys using trial-specific preparatory as inputs, replicating the training procedure for RNNs.
Bottom right: the activity of three randomly selected neurons showcases variability across trials to the same target. B.
The produced network activity recapitulated key features of neural population activity, and also exhibited single unit
variability across reaches to the same target (example in Panel A, inset). C. Reconstruction error after fitting flat (grey)
and nonlinear (blue) manifolds with increasing dimensionality. Note that the relationship between reconstruction error
and network connectivity replicates that observed for RNN models (Figure 3D). D. Nonlinearity index indicating the
ratio of the estimated dimensionality of nonlinear manifolds to that of flat manifolds as function of the number of
units used to sample them for different levels of network connectivity (legend). Line and shaded area, mean±s.d. across
10 seeds. E. The strength of pairwise correlations between network units decreases with increasing network connectivity.
Shown are the strength of the pairwise correlations across all recorded neurons for all each of the three monkeys (left)
and for networks with increasing connectivity levels (right). *** P < 0.001, Wilcoxon rank-sum test.
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Figure S6: Dense recurrent connectivity is both necessary and sufficient in order for manifolds to be nonlinear
in neural network models. A. RNNs with linear units (left) trained on the monkey centre-out reaching task (middle,
example outputs) produced activity whose properties are more consistently estimated with nonlinear manifolds, even if
the units are linear(right). Line and error bars, mean ± s.d. across seeds. B. Fully connected feedforward networks with
nonlinear units (left) trained on the monkey centre-out reaching task (middle, example outputs) produced activity
whose properties are equally well estimated with flat and nonlinear manifolds (right). Data presented as in A. C.
Nonlinearity index indicating the ratio of the estimated dimensionality of nonlinear manifolds to that of flat manifolds
as function of the number of sampled units for the network architectures in A and B as well as the standard recurrent
networks used in the paper (e.g., in Fig. 3). Combined, these results indicate that in neural network models, dense
recurrent connectivity is both necessary and sufficient in order for manifolds to be nonlinear. Lines and shaded areas,
mean±s.d. across 10 random subsets of units.
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Figure S7: Additional data on our recurrent neural network model constrained to have reduced pairwise cor-
relations between units. A. Task performance is similar across models with different degrees of recurrent connectivity.
Individual markers, individual seeds; marker and error bars, mean±s.d. across seeds. B. Strength of pairwise correlations
between units from “standard networks” and “decorrelated networks” with four degrees of recurrent connectivity
compared. Violin, probability density for each network architecture and recurrent connectivity level. C. Nonlinearity
index indicating the ratio of the estimated dimensionality of nonlinear manifolds to that of flat manifolds as function
of the number of sampled units for decorrelated networks with varying degrees of recurrent connectivity (10%, 40%,
70% and 100%). Lines and shaded areas, mean±s.d. across seeds. D. Similarity between the actual and simulated latent
dynamics (red) for models with different degrees of recurrent connectivity, quantified using canonical correlation
analysis. Note that the strength of the correlations between the decorrelated models and the actual data is similar across
different connectivity levels, whereas shuffling the model data over time (orange), across targets (light green), or across
both time and targets (teal) greatly reduces this similarity. Line and shaded area, mean ± s.d. across seeds. E. Estimated
dimensionality of flat (grey) and nonlinear (blue) manifolds as a function of the number of units used to sample them
for decorrelated networks with increasing levels of recurrent connectivity (10%, 40%, 70% and 100%). Lines and shaded
areas, mean±s.d. across 10 random subsets of units. F. A comparison of the dimensionality of the weight changes
across “standard” and “decorrelated” networks with different recurrent connectivity levels following training identifies
changes in network connectivity structure.
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Figure S8: Additional data investigating the differences in the nonlinearity of motor cortical and striatal
manifolds in mice engaged in a reaching, grasping, and pulling task. A. Cumulative neural variance explained
by flat (gray) and nonlinear (blue) motor cortical manifolds as function of the number dimensions for all six mouse
datasets. B. Cumulative neural variance explained by flat (gray) and nonlinear (blue) striatal manifolds as function of
the number dimensions for all six mouse datasets. C. Comparison of single neuron mean firing rate between motor
cortex and striatum. Individual markers, single neurons; marker and errorbar, mean±s.d. for each region. Note the
similarity between regions. * 0.01 ≤ P < 0.05, ** 0.001 ≤ P < 0.01, Wilcoxon rank-sum test.
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Figure S9: Additional data indicating differences in the nonlinearity of motor cortical and striatal manifolds
in mice engaged in a reaching, grasping, and pulling task. A. Reconstruction error after fitting flat (grey) and
nonlinear (blue) manifolds with increasing dimensionality to all the motor cortical datasets. B. Reconstruction error
after fitting flat (grey) and nonlinear (blue) manifolds with increasing dimensionality to all the motor cortical datasets.
C. Estimated dimensionality of flat (grey) and nonlinear (blue) manifolds as function of the number of neurons used
to sample them. Lines and shaded areas, mean±s.d. for each session. Note that, in agreement to the reconstruction
error results shown in Panel A, flat and nonlinear manifolds seem to capture motor cortical activity equally well. D.
Estimated dimensionality of flat (grey) and nonlinear (blue) manifolds as function of the number of neurons used to
sample them. Lines and shaded areas, mean±s.d. for each session. Note the striking contrast between these results and
their motor cortical counterparts (Panel C).
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Figure S10: Additional data indicating that the nonlinearity of neural manifolds increases during more
varied behaviours. A. We compared the nonlinearity underlying writing lines in one or many different directions. B.
Reconstruction error after fitting flat (grey) and nonlinear (blue) manifolds with increasing dimensionality to neural
activity recorded while attempting to draw lines in one direction (left) or all 16 directions (right). Individual lines,
individual sessions. C. Estimated dimensionality of flat (grey) and nonlinear (blue) manifolds as function of the number
of units used to sample them as the participant attempted to draw lines in one direction (left) or all 16 directions (right).
Lines and shaded areas, mean±s.d. across 10 subsets of neurons. D-E. Same as A-B but for one example session of
the monkey centre-out reaching task. F. Nonlinearity index indicating the ratio of the estimated dimensionality of
nonlinear manifolds to that of flat manifolds as function of the number of neurons used to sample them. Shown are
all sessions from Monkey CL, colour coded by number of targets (legend). Values greater than one (dashed grey line)
indicate that nonlinear manifolds capture the data better than flat manifolds. G-I. Same as A-C but for the (attempted)
writing task.
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